

Azienda certificata

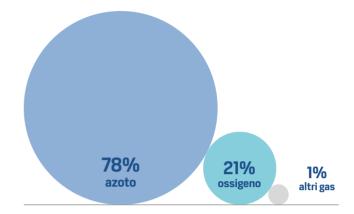
ISO 45001:2018 - DNV

ISO 9001:2015 - DNV

ISO 14001:2015 - DNV

Indice

>	1.0 Gli impianti di distribuzione aria compressa	2
	≥ 1.1 Cos'è l'aria	
	≥ 1.2 L'aria compressa	
	≥ 1.3 Utilizzi dell'aria compressa	
>	2.0 Norme e classificazioni	5
	2.1 Normative di riferimento	5
	2.2 Classificazione della purezza dell'aria	5
>	3.0 I componenti del sistema	6
	3.1 Pressfitting - Definizione del prodotto	6
	≥ 3.2 Pressfitting – inoxPRES: caratteristiche	7
	3.2.1 Pressfitting – inoxPRES: raccordi	7
	3.2.2 Pressfitting – inoxPRES: tubazioni	7
	≥ 3.2.3 Pressfitting – inoxPRES: guarnizioni	8
	≥ 3.2.4 Pressfitting – applicazioni	9
	≥ 3.2.5 Pressfitting – caratteristiche tecniche e performances	
	≥ 3.2.6 Pressfitting – condizioni generali di posa	
	≥ 3.3 Pressfitting – corretta gestione del contaminante acqua	
>	4.0 Progettazione rete	14
	≥ 4.1 Pressfitting – dimensionamento della rete	14
	≥ 4.2 Pressfitting – influenza dei raccordi nel dimensionamento delle linea	15
	≥ 4.3 Pressfitting – velocità del fluido	18
>	5.0 Fissaggio dei tubi, distanza tra i collari	19
>	6.0 Compensazione delle dilatazioni	20
>	7.0 Lavorazione	
	> 7.1 Stoccaggio e trasporto	
	7.2 Tubi - taglio, sbavatura, curvatura	
	7.3 Marcatura della profondità d'innesto / pelatura	
	7.4 Controllo dell'O-ring del raccordo a pressare	
	7.5 Realizzazione della giunzione	
	7.6 Utensili per pressare	25
	7.6.1 Indicazioni generali di base	25
	7.6.2 Utensili di pressatura approvati	
	≥ 7.6.3 Manutenzione periodica delle attrezzature	27
>	8.0 Test e approvazioni	28



1.0 Gli impianti di distribuzione aria compressa

1.1 Cos'è l'aria

Il nostro pianeta è avvolto da uno scudo invisibile chiamato atmosfera, una miscela di gas e vapore acqueo che costituisce l'aria che respiriamo.

L'aria è principalmente costituita da una miscela di gas tra cui azoto (78%), ossigeno (21%), anidride carbonica/vapore acqueo (0,04%) e altri gas come l'argon, il neon, l'elio, il metano, il kripton, lo xeno, l'idrogeno e l'ozono.

Anche se invisibile, inodore e incolore, l'aria esiste ed ha degli effetti su tutto ciò che ci circonda. L'aria esercita una pressione ed occupa tutto lo spazio che ha a disposizione, e diversamente dal vuoto, occupa un volume.

1.2 L'aria compressa

Per aria compressa s'intende l'aria atmosferica ridotta di volume attraverso un compressore alternativo o una pompa, posta in pressione all'interno di un serbatoio.

Da un punto di vista pratico, l'aria compressa non è mai pura e presenta sempre al suo interno dei contaminanti di diversa natura e stato fisico: liquidi (aria – olio) e solidi (polveri). Essi si influenzano reciprocamente e si mescolano formando composti.

L'acqua in particolare è presente nell'aria atmosferica in forma di vapore acqueo.

Quando l'aria è compressa, la pressione parziale del vapore acqueo aumenta, ma a causa dell'aumento della temperatura causata dalla compressione, non si ha condensazione.

Quando l'aria è successivamente raffreddata, l'acqua condensa passando allo stato liquido.

L'umidità può causare corrosione e danneggiare il prodotto finale.

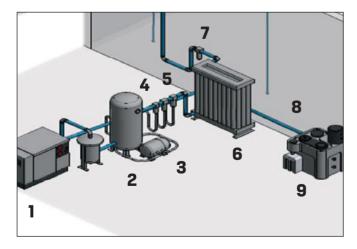
Nei compressori lubrificati, l'aria si contamina inevitabilmente con l'**olio**. Anche l'aria prodotta da compressori non lubrificati può contenere tracce di olio aspirate dall'atmosfera. L'olio presente nell'aria compressa può essere allo stato liquido, aerosol, vapore.

La quantità di **particelle solide** presenti nell'atmosfera si possono stimare attorno ad un valore di 150 milioni per ogni metro cubo. In particolare i solidi con dimensioni minori di 10 micron non possono essere trattenute da filtri in aspirazione quindi vengono immesse nel circuito aria compressa. Alcuni solidi possono avere un effetto catalitico e generare corrosione per la loro proprietà chimica. A questo bisogna aggiungere particelle metalliche, ruggine e scaglie provenienti dalla rete di distribuzione. Questa contaminazione avviene con qualunque tipo di compressore.

1.3 Utilizzi dell'aria compressa

L'aria compressa è utilizzata in diversi ambiti industriali. L'utilizzo condiziona le scelte progettuali, l'uso di diversi sistemi di filtrazione e l'introduzione di vari strumenti di abbattimento e trattamento. In generale l'aria compressa può essere impiegata:

ARIA PER USO GENERICO PRIVA DI OLIO


- Protezione generale di reti ad anello
- Prefiltrazione per essiccatori d'aria ad adsorbimento
- Automazione di impianti
- Logistica aerea
- Utensili pneumatici
- Strumentazione generale
- Stampaggio di metalli
- Fucinatura
- Assemblaggio industriale in generale (senza tubazioni esterne)
- Trasporto pneumatico motori ad aria
- Officine (utensili)
- Officine meccaniche (gonfiaggio pneumatici)
- Sistemi di termoregolazione
- Pistole di soffiaggio
- Attrezzature di calibrazione
- Miscelazione di materie prime
- Sabbiatura / pallinatura

ARIA DI ELEVATA QUALITA' PRIVA DI OLIO

- Soffiaggio di materie plastiche, a es. contenitore in PFT
- Lavorazione di pellicole
- Strumentazione critica
- Applicazioni pneumatiche avanzate
- Interruttori ad aria compressa
- Camere di decompressione
- Produzione di cosmetici
- Laser e sistemi ottici
- Robotica
- Verniciatura a spruzzo
- Cuscinetti pneumatici
- Spurgo di condotti
- Apparecchiature di misura
- Pretrattamento per generazione di gas on-site

I rigorosi livelli di qualità dell'aria necessari ai moderni stabilimenti produttivi comportano un'attenta progettazione, installazione e messa in servizio.

I sistemi a pressare sono indicati esclusivamente per usi industriali mentre sono esclusi usi medicali. La responsabilità della scelta del tipo di sistema/tubazione in funzione del tipo di applicazione, è a carico del progettista/installatore.

Componenti

1_Compressore **6_**Essicatore

2_Serbatoio aria

7_Filtro antipolvere

3_Scarico condense

8_Scarico condense

Non è più sufficiente trattare l'aria in un unico punto ed è altamente raccomandato che l'aria venga trattata in sala compressori fino ad un livello che fornisca aria per utilizzo generico in modo da proteggere il sistema di distribuzione.

La depurazione al punto di utilizzo deve essere studiata non solo per rimuovere la contaminazione residua nel sistema di distribuzione, ma facendo particolare attenzione alla qualità dell'aria richiesta da ogni singola applicazione. Questo approccio a livello progettuale garantisce un corretto trattamento dell'aria e rappresenta la soluzione più conveniente per avere aria compressa di qualità elevata.

- 4_Separatore condense
- 5_Filtri coalescenza
- **9**_Separatore acqua/olio

Compressore

Filtri con essicatore

Punto di prelievo

Filtri con essicatore

Serbatoio aria compressa

2.0 Norme e classificazioni

2.1 Normative di riferimento

La norma di riferimento per l'aria compressa è la ISO 8573 che raggruppa gli standard internazionali relativi alla qualità (o purezza) dell'aria compressa. La norma è suddivisa in nove parti, di cui la parte 1 specifica i requisiti di qualità per l'aria compressa mentre le parti 2–9 i metodi di prova per i vari contaminanti.

La ISO 8573-1 è il documento principale della serie ISO 8573, poiché specifica il livello di contaminazione ammesso in ogni metro cubo di aria compressa. La ISO 8573-1 elenca i contaminanti principali come particolato solido, acqua e olio. I livelli di purezza per ogni contaminante vengono riportati nella tabella sottostante.

		TAB	ELLA 1: CONTA	AMINAZIONE ISO 85	573:2010		
		Particol	ato solido		Olio		
Classe ISO 8573-1	Numero mas	simo di partico	elle per m³	Concentrazione	Punto di	Concetrazione	Olio totale
2010	0,1-0,5 micron	0,5-1 micron	1-5 micron	massa mg/m³	rugiada in pressione	liquido g/m³	(aerosol liquido e vapore) mg/m³
0		In base all		ell'utilizzatore o del fo estrittivo rispetto al		oparecchiatura e	
1	≤ 20.000	≤400	≤10	-	≤-70°C	-	≤ 0,01
2	≤ 400.000	≤ 6.000	≤100	-	≤-40°C	-	≤ 0,1
3	-	≤90.000	≤ 1.000	-	≤-20°C	-	≤1
4	-	-	≤10.000	-	≤ +3°C	-	≤ 5
5	-	-	≤100.000	-	≤ +7°C	-	-
6	-	-	-	0 < Cp ≤ 5	≤ +10°C	-	-
7	-	-	-	5 < Cp ≤ 10	-	Cw ≤ 0,5	-
8	8 -		-	-	-	0,5 < Cw ≤ 5	-
9	-	-	-	-	-	5 < Cw < 10	-
Χ	_	-	-	Cp > 10	_	Cw > 10	> 5

2.2 Classificazione della purezza dell'aria

In conformità alla norma ISO8573-1, per specificare la purezza dell'aria occorre sempre indicare la norma, seguita dalla classe di purezza scelta per ogni contaminante, solido, acqua ed olio totale.

È possibile scegliere una classe di purezza diversa per ogni contaminante.

Esempio

L'indicazione della qualità dell'aria "ISO 8573-1 Classe 1.2.1" indica che alle condizioni di esercizio previste dalla norma, l'aria presenta la qualità qui descritta:

- Classe 1 particolato: in ogni metro cubo di aria compressa è ammesso un massimo di 20.000 particelle di dimensione compresa tra 0,1 e 0,5 micron , 400 particelle di dimensione compresa tra 0,5 e 1 micron e 10 particelle di dimensione compresa tra 1 e 5 micron.
- Classe 2 acqua: è richiesto un punto di rugiada in pressione di –40°C o migliore e non è ammessa acqua allo stato liquido.
- Classe 1 olio: ogni metro cubo di aria compressa può contenere al massimo 0,01 mg di olio. Si tratta di un limite combinato relativo ad olio in forma liquida, aerosol e vapore.

ISO 8573-1:2010 classe zero: Classe O non significa zero contaminanti.

La classe O richiede che l'utilizzatore ed il produttore dell'apparecchiatura concordino il livello di contaminazione come parte scritta di una specifica sulla qualità dell'aria. I livelli di contaminazione concordati devono essere misurabili con le apparecchiature ed i metodi di prova previsti dalla ISO 8573 parti 2-9. La classe O concordata deve essere scritta in tutta la documentazione per essere conforme allo standard.

3.0 I componenti del sistema

3.1 Pressfitting - Definizione del prodotto

Un sistema di distribuzione aria compressa ramificato e capillare necessita di un soluzione applicativa innovativa.

Dimenticatevi la saldatura dei tubi di rame, la filettatura in acciaio zincato od avvitare insieme tubi in plastica e le limitazioni dei sistemi in alluminio. Il sistema pressfitting è semplice e prevede solo lo schiacciamento automatico di un tubo su un raccordo, senza saldatura, incollaggio od aggraffatura. Questo nuovo sistema è veloce ed economico, perché richiede solo la metà del tempo per l'installazione. Un impianto realizzato con pressfitting è molto duraturo perché i tubi di acciaio sono intrinsecamente più resistenti e più rigidi di quelli in plastica. La rigidità del sistema e la bassissima dilatazione termica consente di ridurre al minimo l'uso di fissaggi e dei punti fissi e scorrevoli.

Questi sono i vantaggi che offrono i sistemi a pressare **inoxPRES**, **steelPRES** specificatamente pensati e approvati per veicolazione dell'aria compressa:

- montaggio semplice, pratico e comodo (efficiente);
- installazione rapida (abbattimento ore di manodopera);
- sicuro e approvato (sistema garantito);
- non è necessario personale specializzato (nessuna specifica abilitazione);
- sicurezza e nessun uso di fiamme libere.

semplice sicuro ed approvato

nessun patentino nessuna fiamma

La gamma **inoxPRES** è la più indicata per la veicolazione dell'aria compressa, essendo realizzata sia per raccordi che per tubazioni, in acciaio inossidabile, materiale "pulito", molto resistente ai processi corrosivi e meccanicamente molto performante.

La scelta della gamma **inoxPRES** è consigliata in particolare quando la qualità dell'aria è un requisito importante per le apparecchiature collegate alla rete. Si suggerisce in tali casi di utilizzare tubazioni in acciaio inossidabile AISI 316L (1.4404) o AISI 304L (1.4307).

I sistemi a pressare sono indicati esclusivamente per usi industriali mentre sono esclusi usi medicali. La responsabilità della scelta del tipo di sistema/tubazione in funzione del tipo di applicazione, è a carico del progettista/installatore.

Altri materiali come il rame e l'acciaio al carbonio possono essere impiegati con le dovute analisi preliminari in funzione del tipo di applicazione ed ambiente d'installazione.

I sistemi di tubazioni in plastica ed in acciaio zincato sono da anni utilizzati nel settore, ma possono costare molto più di quanto si possa pensare. Il tubo zincato corrode all'interno senza che sia possibile operare sorveglianza ed interventi. I maggiori spessori, a parità di diametro esterno, riducono la sezione interna con conseguente aumento della caduta di pressione. Inoltre le tubazioni in plastica, se non correttamente fissate, tendono a flettere creando punti di raccolta della condensa.

3.2 Pressfitting - inoxPRES: caratteristiche

Le seguenti informazioni saranno relative alla gamma **inoxPRES** ritenuta "top class" per la veicolazione di aria compressa.

3.2.1 Pressfitting - inoxPRES: raccordi

I raccordi a pressare **inoxPRES** sono prodotti in acciaio inossidabile austenitico altolegato Cr-Ni-Mo AISI 316L (materiale nº 1.4404).

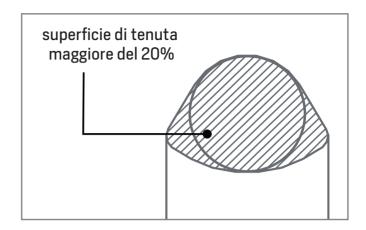
Sui raccordi vengono marcati a laser il nome del produttore, il diametro, il marchio di controllo DVGW ed un codice interno.

Nelle estremità rigonfie dei raccordi a pressare viene inserito di serie un anello di tenuta nero in gomma EPDM.

3.2.2 Pressfitting - inoxPRES: tubazioni

I tubi **inoxPRES**, a pareti sottili con saldatura longitudinale, sono di acciaio inossidabile austenitico altolegato Cr-Ni-Mo AlSI 316L (materiale no 1.4404), in tubo ferritico (senza nickel) in acciaio inox Type 444 (materiale no 1.4521) e in AlSI 304L (materiale no 1.4307). I tubi sono realizzati in conformità alla EN 10217-7 e alla EN 10312. Le superfici interne ed esterne sono di metallo liscio, esenti da sostanze che possono generare fenomeni di corrosione. I tubi **inoxPRES** sono classificati come non combustibili appartenenti alla classe A di reazione al fuoco; essi vengono forniti in barre da 6 m le cui estremità sono chiuse con tappi di plastica.

TA	BELLA 2: TUBI INOXPRE	S - DIMENSIONI E CARATT	ERISTICHE TUBI (SERIE	2)
Diametro esterno x spessore mm	Diametro nominale DN	Diametro interno mm	Massa kg/m	Contenuto d'acqua l/m
15 x 1	12	13	0,351	0,133
18 x 1	15	16	0,426	0,201
22 x 1,2	20	19,6	0,624	0,302
28 x 1,2	25	25,6	0,790	0,514
35 x 1,5	32	32	1,240	0,804
42 x 1,5	40	39	1,503	1,194
54 x 1,5	50	51	1,972	2,042
76,1 x 2	65	72,1	3,550	4,080
88,9 x 2	80	84,9	4,150	5,660
108 x 2	100	104	5,050	8,490



3.2.3 Pressfitting - inoxPRES: guarnizioni

I tradizionali sistemi di raccordi a pressare utilizzano anelli di tenuta (O-ring) a sezione circolare che in caso di lavorazione non appropriata, sono facilmente soggetti ad essere danneggiati. RM invece usa un anello di tenuta brevettato a profilo lenticolare che aderisce perfettamente alla camera toroidale.

Ne conseguono i seguenti vantaggi:

- una superficie di tenuta maggiore del 20%;
- notevole diminuzione del rischio di danneggiamento dell'anello di tenuta:
- facilita l'inserimento del tubo.

L'anello di tenuta nero in EPDM di Ø 15 ÷ 54 mm è provvisto di un'ulteriore caratteristica di sicurezza la quale assicura che ogni giunzione accidentalmente non pressata, sia visibile durante la prova di pressione dando luogo ad una perdita.

In funzione del residuo d'olio presente nelle linee d'aria compressa, sarà necessario verificare che l'o-ring in EPDM sia idoneo, o se sia necessario sostituirlo con l'o-ring in FKM. Per aria compressa in classe 5, con contenuto di olio cioè superiore a 5 mg/m³, si raccomanda l'uso dell'anello di tenuta realizzato in FKM, resistente agli olii ed agli idrocarburi.

O-ring in EPDM Ottimale per concentrazione di olio fino a classe $4 (< 5 \text{ mg/m}^3)$

O-ring in FKM Ottimale per tutte le concentrazione di olio a partire dalla classe $5 (> 5 \text{ mg/m}^3)$

Per ottenere un'ermeticità ottimale delle tubazioni, si consiglia di bagnare l'o-ring con acqua prima di inserirlo nel raccordo.

Gli impianti di aria compressa per impianti di verniciatura devono essere "silicone free" per evitare il danneggiamento delle superfici verniciate. I sistemi a pressare escono dalla produzione con o-ring EPDM (non silicon free).

Eventuali sostituzioni degli o-ring non garantiscono che il sistema sia esente da tracce di silicone. In tal senso per gli impianti di verniciatura è necessario richiedere specificatamente al produttore il produtto con specifico o-ring montato in stabilimento senza inquinamento da silicone (gamma inoxPRES HT silicone free con O-ring in FKM).

3.2.4 Pressfitting - applicazioni

In Raccorderie Metalliche l'aria compressa la conosciamo bene: di seguito vengono riportate alcune foto relative agli impianti realizzati negli stabilimenti Raccorderie metalliche di Campitello e Pilastro.

3.2.5 Pressfitting - caratteristiche tecniche e performances

Il sistema **inoxPRES** è particolarmente performante poiché è realizzato in AISI 316L – tra le migliori leghe di acciaio inossidabile – ed è stato testato ed approvato dai principali enti internazionali.

	TABELLA 3: CARATTER	RISTRICHE TECNICHE INOXPRES
PRESSIONI DI ESERCIZIO	Min	-0,95 bar
PRESSIONI DI ESERCIZIO	Max	PN16 (16 bar) DN 15 ÷ 108 mm
	Min	-20°C
TEMPERATURE DI ESERCIZIO	Max	+120°C (o-ring in EPDM) +220°C (o-ring in FKM)
FLUIDI/IMPIANTI COMPATIBILI	Gas neutri	azoto, argon, anidride carbonica
	Carico di rottura	600 N/mm ²
	Carico di snervamento	220 N/mm ²
CADATTEDICTIONE	Allungamento	40 %
CARATTERISTICHE TUBAZIONE METALLICA	Coeff. dilatazione lineare	1.7×10^{-5}
	Rugosità	≤ 1,0 µm
	Resistenza al fuoco	in accordo alla norma DIN 4102-1 sono in Classe A
CII ETTATUDE	EN 10226-1 (ex ISO	7/1) Filettature maschio conica
FILETTATURE	EN 10226-1 (ex ISO 7/	1) Filettature femmina cilindrica

Nella successiva tabella vengono riportate le caratteristiche meccaniche dell'acciaio inossidabile **inoxPRES** confrontato con gli altri materiali utilizzati per le linee di aria compressa.

	TABELLA 4: CARATTERISTRICHE MECCANICHE MATERIALI										
CARATTERISTICHE MECCANICHE	Acciaio inossidabile	Acciaio galvanizzato	Rame	Alluminio	PVC						
Limite di trazione (N/mm²)	600	350	250	90	55						
Limite elastico (N/mm²)	220	220	130	70	-						
Allungamento (%)	40	25	50	15	30						
Coeff. dilatazione lineare	1,7 x 10 ⁻⁵	1,2 x 10 ⁻⁵	1,7 x 10 ⁻⁵	2,4 x 10 ⁻⁵	7 x 10 ⁻⁵						

Da un punto di vista dimensionale, il ridotto spessore del tubo **inoxPRES**, offre un migliore flusso e una minore perdita di carico, a parità di diametro esterno, rispetto a tubi di plastica e di alluminio.

	TABELLA 5: SCHEDA GENERALE DIMENSIONI TUBAZIONI										
Mat. P	lastico	Allur	ninio	inoxPRES TU	JBI (SERIE 2)						
De (mm)	Di (mm)	De (mm)	Di (mm)	De (mm)	Di (mm)						
20	14	20	17	22	19,6						
25	18	25	23	28	25,6						
32	23	32	29	35	32						
40	29	40	37	42	39						
50	36	50	46	54	51						
63	45	63	59	-	-						
-	-	-	-	76,1	72,1						
90	65	-	-	88,9	84,9						
110	70	110	106	108	104						

Confrontando le dimensioni dei tubi con i sistemi in plastica e in alluminio, in alcuni casi è possibile usare un tubo con diametro esterno più piccolo avendo comunque una sezione interna maggiore, ottenendo così un miglior flusso e minori perdite di carico.

MASSIMA PRESSIONE D'ESERCIZIO ALLE DIVERSE TEMPERATURE DI LAVORO 18 Tubi in acciaio 16 Tubi in alluminio 14 12 10 Pressione (bar) Tubi in materiale plastico . -20 -10 0 30 40 50 60 Temperatura (°C)

3.2.6 Pressfitting – condizioni generali di posa

Le reti per l'aria compressa sono generalmente di tipo aereo e sono ad anello chiuso per una migliore distribuzione delle pressioni. I sistemi pressfitting sono una soluzione ideale per la realizzazione di questi impianti vista la complessità e le numerose ramificazioni. La gamma **inoxPRES** in particolare offre diverse soluzioni per facilitare l'installazione.

Collare di presa con derivazione pressfitting e filettata

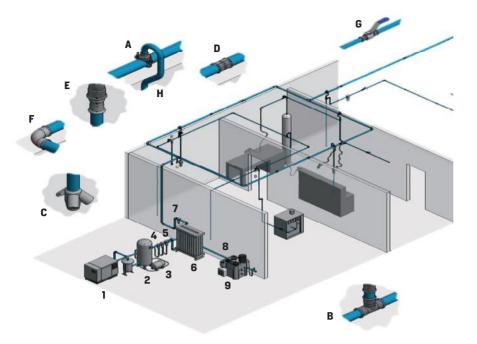
Ideale per la realizzazione delle linee verticali destinate alle utenze finali. La semplicità e la rapidità di utilizzo consentono di avere grande flessibilità nella realizzazione della rete di distribuzione e facilmente realizzare ampliamenti o modifiche.

Tubo per aria compressa

Questo speciale tubo curvo combinato con un tee o con un collare di presa è la soluzione ideale per realizzare una derivazione verticale, consentendo di separare eventuali residui di acqua evitando che arrivino alle utenze.

Deviazione a Y per impianti ad aria compressa

Raccordo indispensabile a fine linea per la connessione degli attacchi rapidi. La configurazione con le due uscite a 60° consente la connessione simultanea di due attacchi rapidi ed evita l'interferenza nel loro utilizzo. Il raccordo è munito anche di una terza uscita, che serve come spurgo.


Valvola pressfitting (2 pezzi e 3 pezzi)

Sono elementi importanti in una rete di distribuzione dell'aria compressa perché consentono la regolazione del flusso di aria e una migliore gestione della portata.

Tubo flessibile ad omega e diritto

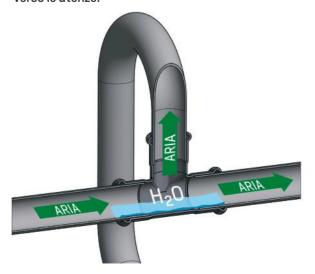
Elementi di grande flessibilità, consentono di poter realizzare connessioni in modo semplice anche in spazi stretti e dove la realizzazione della linea tradizionale è impossibile. Sono costituiti da componenti in acciaio inossidabile, quindi mantengono le stesse ottime caratteristiche degli altri raccordi **inoxPRES**.

LEGENDA

Componenti impianto trattamento aria

- 1 Compressore d'aria
- 2 Serbatoio d'aria umida
- 3 Scarico delle condense
- 4 Separatore di condensa
- 5 Filtri a coalescenza
- 6 Essicatore ad assorbimento modulare
- 7 Filtro antipolvere
- 8 Scarico delle condense
- 9 Separatore acqua/olio

Raccordi gamma Inoxpres per aria compressa


- A Collare con presa di derivazione
- B Tee
- C Derivazione a Y
- **D** Manicotto
- E Riduzione MF
- **F** Curva
- G Valvola a sfera
- H Tubo curvo per aria compressa

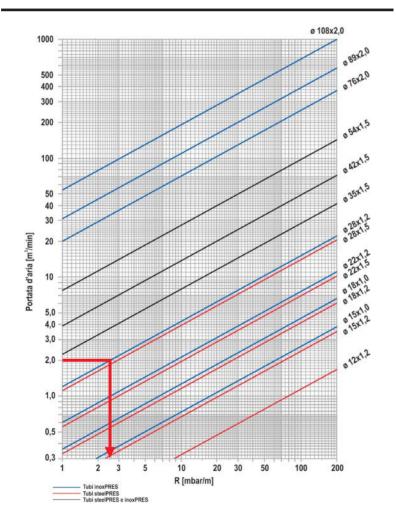
3.3 Pressfitting - corretta gestione del contaminante acqua

L'aria compressa in uscita dal compressore non è mai perfettamente secca, ma contiene umidità che condensando, si trasforma in acqua contaminando l'aria stessa. Se l'impianto non presenta un valido essiccatore a valle del compressore, l'acqua può diffondersi nelle tubazioni creando nel tempo fenomeni di corrosione. La scelta del tubo e raccordi in acciaio inossidabile, annulla il rischio di avere corrosioni interne.

Qualora a progetto non sia presente un essiccatore è necessario osservare le seguenti indicazioni:

- i tubi devono avere una pendenza minima, nel senso di scorrimento dell'aria, pari a 7 mm/m (nei limiti del possibile è opportuno mantenere una pendenza di 1 cm al metro);
- ogni 20-30 metri si dovrà prevedere un punto di scarico della condensa, così come si deve fare all'estremità inferiore di ogni derivazione;
- le derivazioni di alimentazione per le utenze, dovranno essere realizzate utilizzando tee **inoxPRES** o collari di presa **inoxPRES** combinati con tubo curvo per aria compressa, al fine di evitare il più possibile il trasporto della condensa verso le utenze.

4.0 Progettazione rete


4.1 Pressfitting - dimensionamento della rete

I dati necessari per il dimensionamento di una rete d'aria compressa, sono i seguenti:

- consumo unitario per ogni utenza e consumo totale per zone e totale generale, espressi in m³/min;
- pressione nominale di esercizio di ogni utenza, nonché la sua pressione minima e massima ammessa.

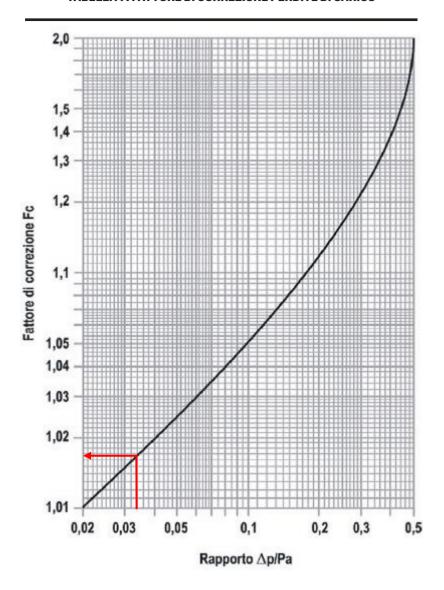
Con questi dati si potranno calcolare i vari tronchi della rete di distribuzione, le diramazioni ad ogni singola utenza. Nel dimensionamento corretto della rete giocano un ruolo fondamentale le perdite di carico, che sono dipendenti dalla tipologia di tubazione installata (superficie interna), dalle dimensioni delle tubazioni, dalla geometria dei raccordi e diventano un parametro critico tanto più la rete è complessa e lunga. Il sistema **inoxPRES** in particolare è una soluzione ideale nella riduzione delle perdite di carico perché presenta una superficie interna delle tubazioni particolarmente liscia e quindi offre scarsissima resistenza al flusso interno.

TABELLA 6: PERDITE DI CARICO ARIA COMPRESSA A 7 BAR A 15°C

In Tabella 6, sono riportate le curve di perdita di carico dei tubi inoxPRES, per aria compressa a 15°C ed per una pressione di 7 bar.

Una installazione di aria compressa è corretta quando la perdita di carico che ha luogo nelle tubazioni, dal serbatoio della centrale fino alle prese per le utenze, è dell'ordine di 10.000 – 30.000 Pa (0,1 – 0,3 bar) ed in generale è consigliabile che non superi il 5% della pressione di esercizio.

Il diagramma è stato sviluppato tenendo in considerazione i parametri principale per il dimensionamento di una rete di distribuzione: Δp = perdita di carico unitaria [mbar/m]


G = portata d'aria [m³/min]

P = pressione d'esercizio [bar]

di = diametro interno dei tubi [mm]

TABELLA 7: FATTORE DI CORREZIONE PERDITE DI CARICO

Calcolando la perdita di carico totale del circuito, qualora il valore ottenuto sia superiore al 5% del valore della pressione iniziale, si dovrà procedere ad una correzione del valore di $[\Delta p]$, per tener conto dell'espansione (tabella 7), andando a valutare la possibilità di utilizzare tubazioni con diametro maggiore.

Poichè i diagrammi sono stati sviluppati per aria a 15°C, qualora la temperatura effettiva fosse molto diversa da questo valore, si dovrà procedere ad una seconda correzione del [Δp], per tenere conto della diversa viscosità dinamica del fluido.

4.2 Pressfitting - influenza dei raccordi nel dimensionamento delle linea

La lunghezza della rete impianto necessita di considerare la lunghezza equivalente di pezzi speciali quali valvole, curve, tee, etc.

	TABELLA 8: LUNGHEZZA EQUIVALENTE PEZZI SPECIALI											
Dagagadi	Lunghezza equivalente in metri di tubo											
Raccordi	15	18	22	28	35	42	54	76,1	88,9	108		
Curva	0,5	0,7	1	1,5	2,5	3	3,5	4,5	5	7		
Tee	1	1,3	1,5	2	3	3,5	4	6	7	10		
Riduzione	0,1	0,2	0,3	0,5	0,7	0,8	1	1.5	2	2,5		
Valvola	0,1	0,1	0,1	0,3	0,5	0,6	0,7	0,9	1	1,5		

Esempio

Si abbia una rete di distribuzione di aria compressa lunga 100 metri, realizzato con tubo **inoxPRES** Ø 28 x 1,2, con una portata d'aria di 2 m³/min, ad una pressione effettiva di 7 bar (8,013 bar di pressione assoluta). All'interno dell'impianto sono presenti 4 curve Ø 28, 1 valvola Ø 28, e 2 tee Ø 28.

La lunghezza equivalente risulta essere: 4 * 1,5 + 1 * 0,3 + 2 * 2 = 10,3 m La lunghezza totale da considerare risulta essere: 100 + 10,3 = 110,3 m

Dal diagramma Tabella 6 si ottiene:

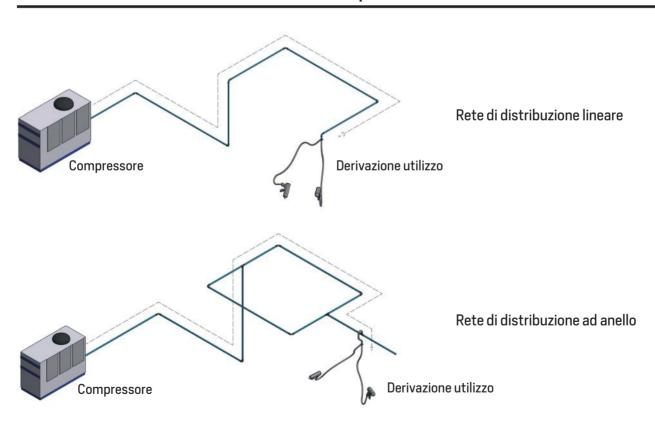
R = 2.5 mbar/m

La perdità di carico sarà:

 $\Delta p = 2.5 * 110.3 = 275.75 \text{ mbar}$

Rapportando tale dato al valore di pressione assoluta, si avrà:

 $[\Delta p/Pa] = 0.275 / 8.013 = 0.034$


Dal diagramma Tabella 7, si ricava quindi il fattore di correzione:

Fc = 1,016

Quindi il valore di perdita di carico in funzione dell'espansione del fluido sarà:

 $\Delta p_c = 1,016 * 2,5 * 110,3 = 280,16 \text{ mbar} = 0,28 \text{ bar}$

Distanza tra compressore utenza

Per il corretto dimensionamento della rete è importante considerare la lunghezza della linea ed in particolare, la distanza tra compressore ed utenze finali.

Nelle tabelle 9 e 10 seguenti vengono indicati i diametri consigliati per la realizzazione di una linea di aria compressa in funzione della portata e della distanza tra compressore ed utenza.

Sono proposte due tabelle: una con pressione di esercizio 7 bar ed una seconda a 12 bar, considerando una perdita di pressione massima del 4%.

TARFII	A Q	· DIAI	MFTDI	CONSIGI	IATI	D=7har

								JIOLIAII					
	tata d'ari								e ed uten				
NI/min	Nm³/h	cfm	25	50	100	150	200	300	400	500	1000	1500	2000
230	14	8	15	15	18	18	18	18	18	18	22	22	28
650	39	23	15	18	22	22	22	28	28	28	35	35	35
900	54	32	18	18	22	28	28	28	28	28	35	35	42
1200	72	42	18	22	28	28	28	28	35	35	42	42	42
1750	105	62	18	28	28	28	35	35	35	42	42	54	54
2000	120	71	22	28	28	35	35	35	42	42	54	54	54
2500	150	88	28	28	35	35	35	42	42	42	54	54	54
3000	180	106	28	28	35	35	42	42	42	54	54	54	76,1
3500	210	124	28	35	35	42	42	42	54	54	54	76,1	76,1
4500	270	159	28	35	42	42	42	54	54	54	76,1	76,1	76,1
6000	360	212	35	42	42	54	54	54	54	76,1	76,1	76,1	76,1
7000	420	247	35	42	54	54	54	54	76,1	76,1	76,1	76,1	88,9
8500	510	300	35	42	54	54	54	76,1	76,1	76,1	76,1	88,9	88,9
12000	720	424	42	54	54	76,1	76,1	76,1	76,1	76,1	88,9	88,9	108
15000	900	530	54	54	76,1	76,1	76,1	76,1	76,1	88,9	88,9	108	108
18000	1080	636	54	54	76,1	76,1	76,1	76,1	88,9	88,9	108	108	108
21000	1260	742	54	76,1	76,1	76,1	76,1	88,9	88,9	88,9	108	108	108
26000	1560	918	54	76,1	76,1	76,1	88,9	88,9	108	108	108	108	108
31000	1860	1095	76,1	76,1	76,1	88,9	88,9	108	108	108	108	108	108
33000	1980	1165	76,1	76,1	76,1	88,9	88,9	108	108	108	108	108	108
44000	2640	1554	76,1	76,1	88,9	108	108	108	108	108	108	108	108
50000	3000	1766	76,1	76,1	88,9	108	108	108	108	108	108	108	108
58000	3480	2048	76,1	88,9	108	108	108	108	108	108	108	108	108
67000	4020	2366	76,1	88,9	108	108	108	108	108	108	108	108	108
75000	4500	2648	76,1	88,9	108	108	108	108	108	108	108	108	108
83000	4980	2931	88,9	108	108	108	108	108	108	108	108	108	108
92000	5520	3249	88,9	108	108	108	108	108	108	108	108	108	108
100000	6000	3531	88,9	108	108	108	108	108	108	108	108	108	108

Pressione d'esercizio: 7 bar

Massima perdita di carico totale: 4%

<u>In rosso i valori per i quali la perdita di carico è superiore a 4%</u>

In questi casi si possono utilizzare raccordi a saldare inox di dimensioni maggiori a 108 mm

				T/	ABELLA 1	O: DIAMI	ETRI CON	SIGLIATI	P= 12 bar				
Por	tata d'ari	ia				Distan	za tra co	mpressor	e ed uten	za più lon	tana		
NI/min	Nm³/h	cfm	25	50	100	150	200	300	400	500	1000	1500	2000
230	14	8	15	15	15	15	15	15	15	15	18	18	22
650	39	23	15	15	18	18	18	22	22	22	28	28	28
900	54	32	15	18	18	22	22	22	28	28	28	35	35
1200	72	42	18	18	22	22	22	28	28	28	35	35	35
1750	105	62	18	22	22	28	28	28	28	35	35	42	42
2000	120	71	22	22	28	28	28	28	35	35	42	42	42
2500	150	88	22	22	28	28	28	35	35	35	42	42	54
3000	180	106	22	28	28	28	35	35	35	42	42	54	54
3500	210	124	28	28	28	35	35	35	42	42	54	54	54
4500	270	159	28	28	35	35	35	42	42	42	54	54	54
6000	360	212	28	35	35	42	42	42	54	54	54	76,1	76,1
7000	420	247	35	35	35	42	42	54	54	54	76,1	76,1	76,1
8500	510	300	35	35	42	42	54	54	54	54	76,1	76,1	76,1
12000	720	424	35	42	54	54	54	54	76,1	76,1	76,1	76,1	88,9
15000	900	530	42	42	54	54	54	76,1	76,1	76,1	76,1	88,9	88,9
18000	1080	636	42	54	54	54	76,1	76,1	76,1	76,1	88,9	88,9	88,9
21000	1260	742	42	54	54	76,1	76,1	76,1	76,1	76,1	88,9	88,9	108
26000	1560	918	54	54	76,1	76,1	76,1	76,1	76,1	88,9	88,9	108	108
31000	1860	1095	54	54	76,1	76,1	76,1	76,1	88,9	88,9	108	108	108
33000	1980	1165	54	54	76,1	76,1	76,1	76,1	88,9	88,9	108	108	108
44000	2640	1554	54	76,1	76,1	76,1	88,9	88,9	88,9	108	108	108	108
50000	3000	1766	54	76,1	76,1	88,9	88,9	88,9	108	108	108	108	108
58000	3480	2048	76,1	76,1	76,1	88,9	88,9	108	108	108	108	108	108
67000	4020	2366	76,1	76,1	88,9	88,9	108	108	108	108	108	108	108
75000	4500	2648	76,1	76,1	88,9	88,9	108	108	108	108	108	108	108
83000	4980	2931	76,1	76,1	88,9	108	108	108	108	108	108	108	108

Pressione d'esercizio: 12 bar

Massima perdita di carico totale: 4%

In rosso i valori per i quali la perdita di carico è superiore a 4%

76,1

76,1

88,9

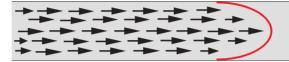
88,9

88,9

In questi casi si possono utilizzare raccordi a saldare inox di dimensioni maggiori a 108 mm

4.3 Pressfitting - velocità del fluido

Uno dei parametri di solito trascurati ma di grande importanza per il dimensionamento della rete, è la velocità dell'aria compressa. Un sotto-dimensionamento dell'impianto provoca un incremento della velocità del fluido, con conseguenze negative sulla gestione dell'impianto, in particolare sulle prestazioni e sui costi. All'interno della linea, l'alta velocità del flusso può generare turbolenza quando il fluido passa all'interno di raccordi, come per esempio tee e curve.


La velocità massima dell'aria che passa internamente alla tubazione principale non deve superare gli 8 m/s. Nella tubazione di servizio o secondaria (che alimentano attrezzature pneumatiche), la velocità massima non deve superare i 15 m/s.

Si raccomanda pertanto di valutare in fase di progettazione anche la velocità del flusso per evitare i seguenti effetti negativi:

- pressione di flusso irregolare;
- turbolenza nella rete:
- cali di pressione alle utenze;
- esubero di potenza richiesto al compressore.

FLUSSO LAMINARE

FLUSSO TURBOLENTO

5.0 Fissaggio dei tubi, distanza tra i collari

I fissaggi servono per fissare i tubi su soffitti, pareti o pavimenti e per compensare le variazioni di lunghezza che si verificano a causa degli sbalzi di temperatura. Posizionando dei punti fissi e scorrevoli, la variazione di lunghezza della tubazione viene diretta nella giusta direzione. I fissaggi non devono essere posizionati in corrispondenza dei raccordi. I collari scorrevoli devono essere posizionati in modo da non ostacolare la variazione di lunghezza dei tubi. Le distanze massime tra i supporti per i tubi pressfitting sono indicate in tabella 11.

	TABELLA 11: DISTANZE MASSIN	ME CONSENTITE TRA I SUPPORTI	
DN	Diametro esterno tubi (mm)	Distanza tra i supporti in orizzontale Metri (indicativa)	Distanza tra i supporti in verticale Metri (indicativa)
12	15	1,2	1,8
15	18	1,2	1,8
20	22	1,8	2,4
25	28	1,8	2,4
32	35	2,4	3,0
40	42	2,4	3,0
50	54	2,7	3,6
65	76,1	3,0	3,6
80	88,9	3,0	3,6
100	108	3,0	3,6

L'ottima rigidità dei tubi inoxPRES consente di ridurre l'uso dei collari rispetto ad altri sistemi (materiali plastici).

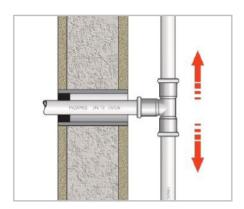
6.0 Compensazione delle dilatazioni

Le condutture metalliche si dilatano in misura variabile a seconda delle temperature a cui sono sottoposte e dei materiali con cui sono realizzate.

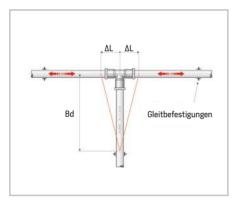
In tabella 12 è rappresentata la variazione di lunghezza dei tubi pressfitting in funzione dei salti termici. La variazione di lunghezza può essere compensata con una sapiente disposizione di punti fissi e scorrevoli, prevedendo compensatori, tratti di dilatazione, curve ad U o compensatori di linea e creando spazi di dilatazione sufficienti.

Alcune situazioni tipiche di montaggio sono rappresentate nelle figure a pag. 21.

		TABELL	.A 12: VARI <i>A</i>	ZIONE DI L	UNGHEZZ	inoxPRES	/steelPRES	/aesPRES/	marinePRI	ES	
	I ford					Δt	[°K]				
	L [m]	10	20	30	40	50	60	70	80	90	100
	3	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0
	4	0,7	1,3	2,0	2,6	3,3	4,0	4,6	5,3	5,9	6,6
	5	0,8	1,7	2,5	3,3	4,1	5,0	5,8	6,6	7,4	8,3
	6	1,0	2,0	3,0	4,0	5,0	5,9	6,9	7,9	8,9	9,9
	7	1,2	2,3	3,5	4,6	5,8	6,9	8,1	9,2	10,4	11,6
inoxPRES	8	1,3	2,6	4,0	5,3	6,6	7,9	9,2	10,6	11,9	13,2
Ä	9	1,5	3,0	4,5	5,9	7,4	8,9	10,4	11,9	13,4	14,9
<u>=</u>	10	1,7	3,3	5,0	6,6	8,3	9,9	11,6	13,2	14,9	16,5
	12	2,0	4,0	5,9	7,9	9,9	11,9	13,9	15,8	17,8	19,8
	14	2,3	4,6	6,9	9,2	11,6	13,9	16,2	18,5	20,8	23,1
	16	2,6	5,3	7,9	10,6	13,2	15,8	18,5	21,1	23,8	26,4
	18	3,0	5,9	8,9	11,9	14,9	17,8	20,8	23,8	26,7	29,7
	20	3,3	6,6	9,9	13,2	16,5	19,8	23,1	26,4	29,7	33,0
	3	0,36	0,72	1,08	1,44	1,80	2,16	2,52	2,88	3,24	3,60
	4	0,48	0,96	1,44	1,92	2,40	2,88	3,36	3,84	4,32	4,80
	5	0,60	1,20	1,80	2,40	3,00	3,60	4,20	4,80	5,40	6,00
	6	0,72	1,44	2,16	2,88	3,60	4,32	5,04	5,76	6,48	7,20
"	7	0,84	1,66	2,52	3,36	4,20	5,04	5,88	6,72	7,56	8,40
RES	8	0,96	1,92	2,88	3,84	4,80	5,76	6,72	7,68	8,64	9,60
르	9	1,08	2,16	3,24	4,32	5,40	6,48	7,56	8,64	9,72	10,80
steelPRES	10	1,20	2,40	3,60	4,80	6,00	7,20	8,40	9,60	10,80	12,00
S	12	1,44	2,88	4,32	5,76	7,20	8,4	10,08	11,52	12,96	14,40
	14	1,68	3,36	5,04	6,72	8,40	10,08	11,76	13,44	15,12	16,80
	16	1,92	3,84	5,76	7,68	9,60	11,52	13,44	15,36	17,28	19,20
	18	2,16	4,32	6,48	8,64	10,80	12,96	15,12	17,28	19,44	21,60
	20	2,40	4,80	7,20	9,60	12,00	14,40	16,80	19,20	21,60	24,00
	3	0,5	1,0	1,5	2,0	2,6	3,1	3,6	4,1	4,6	5,1
	4	0,7	1,4	2,0	2,7	3,4	4,1	4,8	5,4	6,1	6,8
တ	5	0,9	1,7	2,6	3,4	4,3	5,1	6,0	6,8	7,7	8,5
ePRES	6	1,0	2,0	3,1	4,1	5,1	6,1	7,1	8,2	9,2	10,2
e P	7	1,2	2,4	3,6	4,8	6,0	7,1	8,3	9,5	10,7	11,9
Ī	8	1,4	2,7	4,1	5,4	6,8	8,2	9,5	10,9	12,2	13,6
Ĕ	9	1,5	3,1	4,6	6,1	7,7	9,2	10,7	12,2	13,8	15,3
aesPRES / marin	10	1,7	3,4	5,1	6,8	8,5	10,2	11,9	13,6	15,3	17,0
RE	12	2,0	4,1	6,1	8,2	10,2	12,2	14,3	16,3	18,4	20,4
SP	14	2,4	4,8	7,1	9,5	11,9	14,3	16,7	19,0	21,4	23,8
ae	16	2,7	5,4	8,2	10,9	13,6	16,3	19,0	21,8	24,5	27,2
	18	3,1	6,1	9,2	12,2	15,3	18,4	21,4	24,5	27,5	30,6
	20	3,4	6,8	10,2	13,6	17,0	20,4	23,8	27,2	30,6	34,0



Allungamento della tubazione


 $\Delta L = L \times \alpha \times \Delta t$

ΔL = allungamento totale in mm

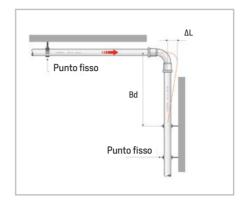
L = lunghezza del tratto di tubo in m

Particolare attraversamento parete

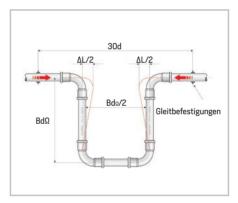
Figura B - Compensazione della dilatazione (Bd) mediante stacco a T

Calcolo braccio di dilatazione per spostamento (Figure A e B)

Bd = $k \times \sqrt{(da \times \Delta L)}$ [mm]


k = costante del materiale inoxPRES / steelPRES = 45 aesPRES / marinePRES = 62

da = diametro esterno del tubo in mm


 ΔL = allungamento in mm

 $\alpha = \text{coefficiente di dilatazione lineare}$ $inoxPRES \ \alpha = 0,0165 \ mm / (m \times {}^{o}K)$ $steelPRES \ \alpha = 0,0120 \ mm / (m \times {}^{o}K)$ $aesPRES / marinePRES \ \alpha = 0,017 \ mm / (m \times {}^{o}K)$

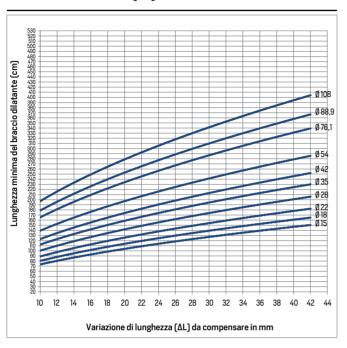
Δt = salto termico in °K

Figura A – Compensazione della dilatazione (Bd) mediante spostamento ortogonale

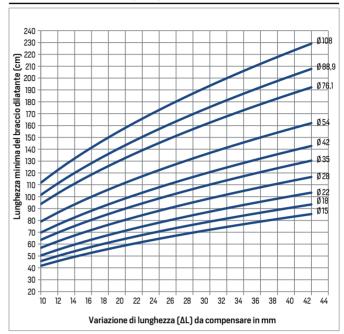
Figura C – Compensazione della dilatazione ad U (Bd Ω = Bd Ω / 1,8)

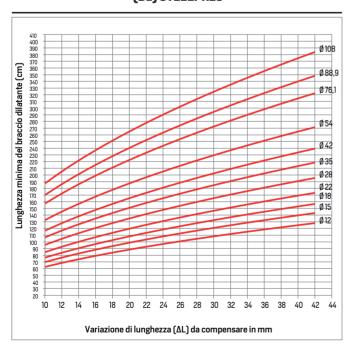
Calcolo braccio di dilatazione per spostamento ad Ω (Figura C)

BdΩ = k x $\sqrt{\text{(da x ΔL)}}$ [mm] oppure BdΩ = Bd / 1,8


k = costante del materiale inoxPRES / steelPRES = 25 aesPRES / marinePRES = 34

da = diametro esterno del tubo in mm


ΔL = allungamento in mm


TABELLA 18a: BRACCI DI DILATAZIONE ø 15 ÷ 108 mm (Bd) INOXPRES

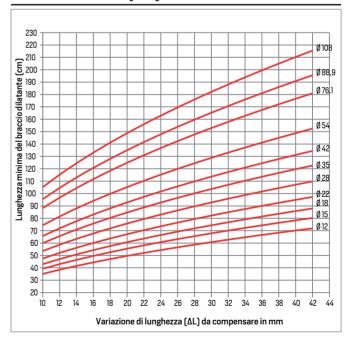

TABELLA 18b: BRACCI DI COMPENSAZIONE PER DILATATORE AD U σ 15 \div 108 mm (Bd Ω) INOXPRES

TABELLA 19a: BRACCI DI DILATAZIONE ø 12 ÷ 108 mm (Bd) STEELPRES

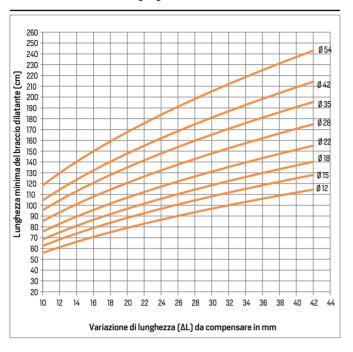
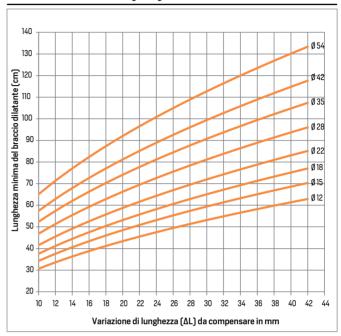
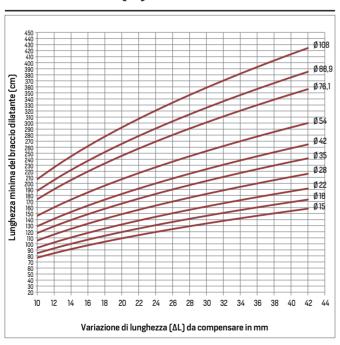


TABELLA 19b: BRACCI DI COMPENSAZIONE PER DILATATORE AD U ϕ 12 \div 108 mm (Bd Ω) STEELPRES




TABELLA 20a: BRACCI DI DILATAZIONE ø 12 ÷ 54 mm (Bd) AESPRES

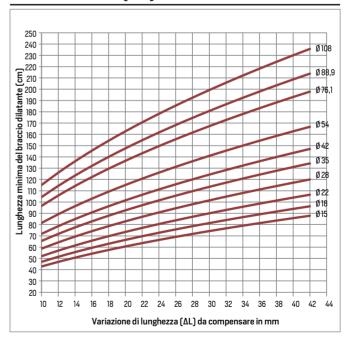

TABELLA 20b: BRACCI DI COMPENSAZIONE PER DILATATORE AD U ø 12 ÷ 54 mm (BdΩ) AESPRES

TABELLA 21a: BRACCI DI DILATAZIONE ø 15 ÷ 108 mm (Bd) MARINEPRES

TABELLA 21b: BRACCI DI COMPENSAZIONE PER DILATATORE AD U ø 15 ÷ 108 mm (BdΩ) MARINEPRES

7.0 Lavorazione

7.1 Stoccaggio e trasporto

Durante il trasporto e lo stoccaggio è necessario evitare che i componenti dei sistemi **inoxPRES** / **steelPRES** / **aesPRES** / **marinePRES** vengano sporcati o danneggiati. Le estremità dei tubi vengono chiuse in fabbrica da tappi in modo da proteggerle contro lo sporco. Le verghe devono essere riposte all'interno di culle verniciate o protette con materiale plastico, affinchè i tubi medesimi non vengano a contatto con altri materiali. Inoltre, tubi e raccordi devono essere mantenuti in luogo coperto per evitare l'insorgere di fenomeni corrosivi e/o ossidazioni superficiali (soprattutto nei componenti del sistema **steelPRES**).

7.2 Tubi - taglio, sbavatura, curvatura

I tubi dei sistemi a pressare devono essere tagliati con i tagliatubi normalmente reperibili in commercio adatti per il materiale lavorato. In alternativa è possibile utilizzare anche seghetti alternativi a denti fini oppure idonee seghe elettromeccaniche.

Taglio del tubo

Sbavatura del tubo

Non è consentito utilizzare:

- attrezzi che provochino surriscaldamento del materiale e colori di rinvenimento durante il taglio;
- seghe raffreddate ad olio;
- il taglio a caldo con cannello ossiacetilenico o con la mola.

Per evitare di danneggiare l'anello di tenuta durante l'inserimento del tubo nel raccordo a pressare, il tubo deve essere accuratamente sbavato sia all'interno che all'esterno. Questa operazione può essere effettuata con uno sbavatore manuale idoneo per il materiale, mentre per dimensioni maggiori, si possono utilizzare anche appositi sbavatori elettrici o lime a mano. I tubi possono essere curvati a freddo fino al \emptyset 22 mm compreso con le apposite attrezzature dedicate normalmente reperibili in commercio ($\mathbb{R} \ge 3,5 \times \mathbb{D}$).

I tubi di rame secondo la norma EN 1057 possono essere curvati con i seguenti raggi minimi di curvatura:

DN 12 - R=45 mm DN 15 - R=55 mm

DN 18 - R=70 mm DN 22 - R=77 mm.

Non è consentita la curvatura a caldo dei tubi.

7.3 Marcatura della profondità d'innesto

La resistenza meccanica della giunzione pressata si ottiene solo rispettando le profondità d'innesto indicate in tabella 17. Dette profondità vanno segnate con appositi marcatori sui tubi o sui raccordi con estremità predisposte all'innesto (ad esempio curve maschio/femmina).

A pressatura avvenuta, la marcatura della profondità d'innesto sul tubo/raccordo deve essere visibile imme-

diatamente accanto alla camera toroidale del raccordo a pressare. La distanza della marcatura sul tubo/ raccordo rispetto alla camera toroidale del raccordo non deve superare il 10% della profondità d'innesto prescritta poiché in caso contrario la resistenza meccanica della giunzione non è garantita.

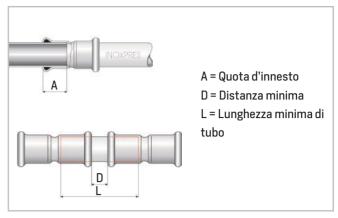
TABELLA 17:
PROFONDITÀ D'INNESTO E DISTANZE MINIME

Diametro esterno tubi mm	A (*) mm	D mm	L mm
12	18	20	56
15	20	20	60
18	20	20	60
22	21	20	62
28	23	20	66
35	26	20	72
42	30	40	100
54	35	40	110
76,1	55	60	170
88,9	60	60	180
108	75	60	210

(*) Tolleranza: ±2 mm

7.4 Controllo dell'O-ring del raccordo a pressare

Prima del montaggio dei raccordi è opportuno verificare che l'anello di tenuta sia correttamente inserito nella sua sede e che non sia sporco o danneggiato. All'occorrenza, è necessario sostituirlo.


Inoltre, va verificato che l'anello di tenuta sia del tipo richiesto per quella specifica applicazione e che non debba essere eventualmente sostituito con un altro.

7.5 Realizzazione della giunzione ø 12 - 108 mm

Il tubo deve essere inserito nel raccordo con una leggera spinta in direzione assiale e contemporanea rotazione, fino alla profondità d'innesto precedentemente marcata. Qualora a causa di strette tolleranze l'inserimento del tubo risultasse difficoltoso, si consiglia di bagnare l'anello di tenuta con acqua o soluzione saponata.

L'utilizzo di olii e grassi a scopo di lubrificante non è consentito.

Procedere alla pressatura con gli appropriati attrezzi elettromeccanici/elettroidraulici muniti, a seconda delle dimensioni, di ganasce o ganascia avvolgente/catena. Gli attrezzi per pressare con le relative ganasce/catene collaudati e approvati sono riportati nelle tabelle 18–19.

Quota minima d'innesto ed accoppiamento

Marcatura della profondità d'innesto

Controllo O-ring

In funzione della dimensione del raccordo a pressare, si monta la ganascia appropriata sulla pressatrice oppure si posiziona la ganascia avvolgente/catena sul raccordo stesso. La scanalatura della ganascia/catena deve essere posizionata esattamente sopra la camera toroidale del raccordo.

Dopo la pressatura occorre verificare che la giunzione sia stata realizzata correttamente e che la profondità d'innesto sia stata rispettata. L'installatore deve inoltre assicurarsi che tutte le giunzioni siano effettivamente state pressate.

Se la deformazione appare anomala, fermare immediatamente l'installazione e verificare la causa.

Gli impianti completamente pressati con giunzioni anomale, non possono essere riconosciuti come un reclamo.

A pressatura avvenuta, le giunzioni non devono più essere sollecitate meccanicamente. L'allineamento della tubazione e il fissaggio dei collegamenti filettati devono quindi essere effettuati prima della pressatura. È comunque consentito muovere e sollevare leggermente la tubazione, ad es. per lavori di verniciatura.

Inserimento del tubo nel raccordo a pressare

Assemblaggio

7.6 Utensili per pressare

7.6.1 Indicazioni generali di base

Gli utensili per pressare sono costituiti essenzialmente da una pressatrice munita di ganasce avvolgente o di catena. In generale, la maggior parte delle ganasce può essere montata su diverse pressatrici di uno stesso produttore. Inoltre, diversi produttori di pressatrici hanno standardizzato la testa portaganasce in modo che sia compatibile anche con ganasce di altri produttori.

I sistemi a pressare nelle dimensioni ø 12–35 mm devono essere pressati con ganasce, dal ø 42–108 mm devono essere pressati con catene.

In tutti i sistemi metallici a pressare, il profilo della camera toroidale (la sede dell'O-ring) del raccordo stesso corrisponde esattamente alla forma geometrica della ganascia/catena. Pertanto è necessario che le diverse ganasce/catene vengano approvate dal produttore del relativo sistema a pressare. Inoltre è necessario osservare le istruzioni per l'uso e la manutenzione fornite dai produttori degli utensili per la pressatura.

Klauke UAP332BT

Klauke UAP100120BT

Novopress ACO203 BT

Novopress ACO403 BT

7.6.2 Utensili di pressatura approvati

Nelle tabelle 18 e 19 vengono riportate le attrezzature Klauke e Novopress approvate da RM, con le rispettive ganasce e catene.

TABELLA 18: PRODUTTORE KLAUKE

Т	Tipo Forza di spinta		Campo d'impiego	Peso	Compatibile con ganasce
MAP1	MAP1 - MAP2L 15 KN 12-22		12-22 mm	~ 1,7 Kg	
	2L_19 2119BT	19 KN	12-35 mm	~1,7 Kg	
	- UAP3L 332BT	32 KN	12-54 mm	~ 3,5 Kg	Novopress EFP2 - EFP201 - AFP201 - EFP202 - AFP202 - EC01 - AC01
U	NP2	32 KN	12-54 mm	~ 3,5 Kg	Novopress EFP2 - EFP201 - AFP201 - EFP202 - AFP202 - EC01 - AC01
•	- UAP4L 432BT	32 KN	12-54 mm PN16 76,1-108 mm PN10	~ 4,3 Kg	Novopress EFP2 - EFP201 - AFP201 - EFP202 - AFP202 - EC01 - AC01 12-54 mm
	- UAP100L 00120BT	120 KN	76,1-108 mm	~ 12,7 Kg	
	PKUAP3	32 KN	12-54 mm	~ 12,3 Kg	Novopress
AH- P700LS	PKUAP4	32 KN	12-54 mm PN16 76,1-108 mm PN10	~ 12,6 Kg	EFP2 - EFP201 - AFP201 - EFP202 - AFP202 - EC01 - AC01 12-54 mm
	PK100AHP	120 KN	76,1-108 mm	~ 20,2 Kg	
EHP2	2/SANB	0,75 KW	76,1-108 mm	~ 69 Kg	

Le macchine a pressatrice Klauke UAP4 / UAP4L / UAP432BT, presentano la limitazione PN10 quando sono utilizzate con diametri king size $76,1 \div 108$ mm.

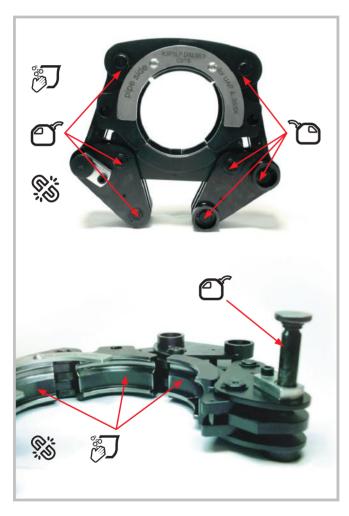
TABELLA 19: PRODUTTORE NOVOPRESS

Tipo	Forza di spinta	Campo d'impiego	Peso	Compatibile con ganasce
AC0102 - AC0103	19 KN	12 ÷ 35 mm	~ 1,7 Kg	
EFP2	32 KN	12 ÷ 54 mm	~ 6,1 Kg	EFP201 - AFP201 - EC01 - AC01
EFP201 - EFP202	32 KN	12 ÷ 54 mm	~ 4,4 Kg	EFP2 - EC01 - AC01
AFP201 - AFP202	32 KN	12 ÷ 54 mm	~ 4,3 Kg	EFP2 - EC01 - AC01
ECO2O2-ACO2O2 ECO2O3-ACO2O3/ BT	32 KN	12 ÷ 54 mm	~ 3,3 Kg	ECO201 - ACO201 - ECO1 - ACO1
ACO2O2XL ACO2O3XL/BT	32 KN	12 ÷ 54 mm PN16 76,1 ÷ 108 ^(*) mm PN10	~ 4,6 Kg	EC0202 - AC0202
ACO401 ACO403/BT	100 KN 120 KN	76,1 ÷ 108 mm	~ 13 kg	
ACO3	36 KN	15 ÷ 54 mm	~ 5,0 Kg	ECO3
EC0301	45 KN	12 ÷ 54 mm PN16 76,1 ÷ 108 ^(*) mm PN10	~ 5,0 Kg	ACO3
НСР	190 KN	76,1 ÷ 108 mm	~ 70 Kg	

ZB221 -> 1º pressing ZB323 -> 1º pressing ZB222 -> 2º pressing ZB324 -> 2º pressing

Le macchine a pressatrice Novopress ACO202XL / ACO203XL / ECO301, presentano la limitazione PN10 quando sono utilizzate con diametri king size 76,1 ÷ 108 mm.

 $\begin{tabular}{l} $(^*)$ 0.108-deve essere pressato 2 volte con i seguenti adattatori: & ACO202/203XL: \end{tabular}$


7.6.3 Manutenzione periodica delle attrezzature

Le macchine a pressare le ganasce e le catene devono essere periodicamente revisionate per una corretta realizzazione delle giunzioni. Le attrezzature devono essere revisionate in accordo alle specifiche del produttore (normalmente una volta all'anno o dopo 10.000 cicli per pressatrici standard, 1.500 cicli per pressatrici King Size).

Inoltre, tutti gli organi in movimento (rulli di spinta) e le superfici di serraggio di ganasce e catene (profili interni), devono essere quotidianamente, ad ogni utilizzo, mantenute pulite e lubrificate.

Il tutto come indicato anche a norma UNI 7129-1.

Eventuali presenze di ossidazioni, vernici e sporcizia in genere riducono l'affidabilità degli utensili creando problemi allo scorrimento delle attrezzature sui raccordi durante la fase di pressatura.

Attrezzatura Klauke

Attrezzatura Novopress

Mantenere pulita la catena

Tenere ingrassati i perni con olio

Attenzione si può rompere

8.0 Test e approvazioni

Di seguito vengono riportati il test report relativo alle prove che il sistema **inoxPRES** ha superato presso il laboratorio DNV e la dichiarazione di conformità alla direttiva PED. Eventuale altra documentazione relativa a sistemi e materiali diversi deve essere richiesta alla scrivente Raccorderie Metalliche.

				E ICENS	
- AND					DNV·GI
	INS	PECTIO	N REPORT	Г – IR01	Rev.00
Section 1 - Ins	spection D	etails			
	Contract No Institute - Ref: 2502 s of Inspect roject No.: nspection: ion/Visit: and Mechag to UNI 1	o.: 94.1.1.4 Busto Arsiz 2820 ion: Busto A-026430 2015-09-1	Arsizio VA, Italy Arsizio VA, I 5 5 and 2015-0 ts on assem	706/2015 (taly 09-28 (bled pipin	aria MN, Italy g for the system INOXPRES
				1	
P.O Item No.	Quantity Ordered	Offered	Inspected	Descriptio	n and Serial Nos.
		Offered	Inspected		n and Serial Nos.
D15		Offered -	Inspected	Samples for	
D15 D28		Offered - -	Inspected	Samples for	r INOXPRES diam. 15
D15 D28 D54		Offered - - -	Inspected	Samples for Samples for Samples for	r INOXPRES diam. 15 r INOXPRES diam. 28 r INOXPRES diam. 54
P.O Item No. D15 D28 D54 D108	Ordered	-	-	Samples for Samples for Samples for Samples for	r INOXPRES diam. 15 r INOXPRES diam. 28 r INOXPRES diam. 54 r INOXPRES diam. 108
D15 D28 D54	Ordered	-	Inspected s as required (Samples for Samples for Samples for Samples for	r INOXPRES diam. 15 r INOXPRES diam. 28 r INOXPRES diam. 54 r INOXPRES diam. 108
D15 D28 D54 D108 Overall Result Satisfactory	Ordered	-	-	Samples for Samples for Samples for Samples for	r INOXPRES diam. 15 r INOXPRES diam. 28 r INOXPRES diam. 54 r INOXPRES diam. 108
D15 D28 D54 D108 Overall Result Satisfactory Unsatisfactory	Ordered Var	- - - - iuos sample:	- - - - s as required (Samples for Samples for Samples for Samples for Tor the applic	r INOXPRES diam. 15 r INOXPRES diam. 28 r INOXPRES diam. 54 r INOXPRES diam. 108 cable tests
D15 D28 D54 D108 Dverall Result Satisfactory Unsatisfactory For further inform	Ordered	iuos sample:	- - - - s as required (Samples for Samples for Samples for Samples for Tor the applic	r INOXPRES diam. 15 r INOXPRES diam. 28 r INOXPRES diam. 54 r INOXPRES diam. 108 cable tests
D15 D28 D54 D108 Dverall Result Satisfactory Unsatisfactory For further inform	Ordered	iuos sample:	s as required f	Samples for Samples for Samples for Samples for Tor the applic	r INOXPRES diam. 15 r INOXPRES diam. 28 r INOXPRES diam. 54 r INOXPRES diam. 108 cable tests
D15 D28 D54 D108 Overall Result Satisfactory	Ordered	iuos sample:	eport summa	Samples for Samples for Samples for Samples for Tor the applic	r INOXPRES diam. 15 r INOXPRES diam. 28 r INOXPRES diam. 54 r INOXPRES diam. 108 cable tests
D15 D28 D54 D108 Dverall Result Satisfactory Unsatisfactory For further inform Section 3 - Det Persons Presen	Ordered	it Compa	eport summa	Samples for Samples for Samples for Samples for Tor the applic	r INOXPRES diam. 15 r INOXPRES diam. 28 r INOXPRES diam. 54 r INOXPRES diam. 108 cable tests ction three.
D15 D28 D54 D108 Dverall Result Satisfactory Unsatisfactory For further inform Section 3 - Det Persons Presen Name Mr A. Aspesi	Ordered	it Compa	eport summa	Samples for Samples for Samples for Samples for the applications arry, see sec	r INOXPRES diam. 15 r INOXPRES diam. 28 r INOXPRES diam. 54 r INOXPRES diam. 108 cable tests ction three. Position QA/QC

DNV GL Headquarters, Veritasveien 1, P.O.Box 300, 1322 Høvik, Norway. Tel: +47 67 57 99 00. www.dnvgl.com

[Legal information]

IR01_Raccorderie Metalliche_2502820_2015-09-15_28.docx

(EN 10204 - 2.1 rev B del 05-2022)

relativa ai sistemi di raccordi a pressare e tubi in acciaio inossidabile

INOXPRES

RACCORDERIE METALLICHE S.p.A.

Strada Sabbionetana, 59 46010 Campitello di Marcaria Mantova (ITALY)

DICHIARA

che il sistema di raccordi a pressare e tubi in acciaio inossidabile INOXPRES

- è conforme alla normativa UNI 11179 "Raccordi a pressare per tubazioni metalliche";
- è conforme alla normativa DVGW G5614 "Connessioni permanenti per condotte metalliche di gas Raccordi a compressione";
- è conforme ai requisiti previsti dalla Direttiva Europea 2014/68/UE (PED: Pressure Equipment Directive);
- è idoneo alla realizzazione di impianti per la veicolazione di aria compressa aventi i seguenti parametri;
 - > pressione di esercizio 16 bar (PN 16) gamma 15 108 mm;
 - > pressione di esercizio 12.5 bar (PN 12.5) gamma 139.7 168.3 mm;
 - > temperatura di esercizio compresa tra -20 / +120 °C;
 - > fluido veicolato: aria con tenore di acqua e olio residui secondo norma ISO 8573-1, nel rispetto di quanto prescritto nella documentazione tecnica di Raccorderie Metalliche S.p.A.;

Il sistema pressfitting INOXPRES e i suoi componenti sono realizzati nell'ambito del Sistema di Gestione della Qualità Certificato ISO 9001:2015.

Campitello di Marcaria, Maggio 2022

Ceccardi Guido

Chief Executive Officer (CEO)

RACCORDERIE METALLICHE S.P.A. Sede e Stabilimento: Strada Sabbionetana, 59 - 46010 Campitello di Marcaria (MN) Italy

Tel. +39 0376 96001 Fax +39 0376 96422 info@racmet.com Cap. soc. € 5.000.000 i.v. Registro Imprese MN 02066990173 Codice Fiscale 02066990173

Partita IVA 01591820202 R.E.A. 169204

(EN 10204 - 2.1 rev B del 05-2022)

relativa ai sistemi di raccordi a pressare e tubi in acciaio inossidabile

INOXPRES

CONFORMITA' ALLA DIRETTIVA PED

Il sistema di raccordi a pressare e tubi in acciaio inossidabile INOXPRES

- è idoneo alla realizzazione di impianti per la veicolazione di aria compressa aventi i seguenti parametri;
 - > pressione di esercizio 16 bar (PN 16) gamma 15 108 mm;
 - > pressione di esercizio 12.5 bar (PN 12.5) gamma 139.7 168.3 mm;
 - > temperatura di esercizio compresa tra -20 / +120 °C;
 - > fluido veicolato: aria con tenore di acqua e olio residui secondo norma ISO 8573-1, nel rispetto di quanto prescritto nella documentazione tecnica di Raccorderie Metalliche S.p.A.;
- è conforme ai requisiti previsti dalla Direttiva Europea 2014/68/UE (PED: Pressure Equipment Directive) articolo 4, paragrafo 3 per la gamma dimensionale compresa tra il Ø15 mm e il Ø54 mm, per la quale non è necessaria la marcatura CE;
- è conforme ai requisiti previsti dalla Direttiva Europea 2014/68/UE (PED: Pressure Equipment Directive) categoria I per la gamma dimensionale compresa tra il Ø76.1 mm e il Ø168.3 mm, per la quale è richiesto un controllo di fabbricazione interno;

A garanzia della qualità del prodotto e del rispetto dei requisiti PED, il sistema pressfitting INOXPRES e i suoi componenti sono realizzati nell'ambito del Sistema di Gestione della Qualità Certificato ISO 9001:2015, e in conformità ai regolamenti dei principali enti di certificazione europei ed internazionali, DVGW, CSTB, KIWA, IMQ, ITeC, DNV, LLOYD'S REGISTER, ABS, che svolgono regolare sorveglianza periodica di prodotto e di fabbrica (ispezione di parte terza condotta da organo indipendente).

Campitello di Marcaria, Maggio 2022

Ceccardi Guido

Chief Executive Officer (CEO)

RACCORDERIE METALLICHE S.P.A. Sede e Stabilimento: Strada Sabbionetana, 59 - 46010 Campitello di Marcaria (MN) Italy

Tel. +39 0376 96001 Fax +39 0376 96422 info@racmet.com Cap. soc. € 5.000.000 i.v. Registro Imprese MN 02066990173 Codice Fiscale 02066990173

Partita IVA 01591820202 R.E.A. 169204

(EN 10204 - 2.1 rev B del 05-2022)

relativa ai sistemi di raccordi a pressare e tubi in acciaio inossidabile

INOXPRES

CORRETTO USO DEL SISTEMA

Il sistema a pressare INOXPRES è utilizzabile per installazioni aria compressa con una pressione massima di esercizio di 16 bar (PN16) gamma 15 – 108 mm e 12.5 bar (PN12.5) gamma 139.7 – 168.3 mm.

Per un corretto utilizzo del sistema pressfitting INOXPRES, e una corretta installazione è necessario fare riferimento ai seguenti documenti:

- Manuale Tecnico Pressfitting di Raccorderie Metalliche;
 (sul sito internet <u>www.racmet.com</u> è sempre disponibile l'ultima edizione aggiornata)
- > Direttiva Europea 2014/68/UE (PED: Presure Equipment Directive);
- > Normative nazionali vigenti in materia di progettazione, installazione e manutenzione di impianti per trasporto di aria compressa;

Per la scelta delle attrezzature a pressare, è necessario fare riferimento al Manuale Tecnico Pressfitting e utilizzare le attrezzature che garantiscono la pressione di esercizio a 16 bar, dichiarate compatibili e idonee all'uso da Raccorderie Metalliche S.p.A.

Ove richiesto, il progettista o l'installatore devono richiedere il parere tecnico di un ente preposto, che possa rilasciare il benestare all'impianto e alla scelta dei componenti installati.

Raccorderie Metalliche S.p.A. lascia al progettista dell'impianto la valutazione di conformità del sistema a pressare INOXPRES ad eventuali regolamenti territoriali e leggi nazionali che specifichino e regolino la progettazione, l'installazione e la manutenzione delle installazioni destinate alla veicolazione dell'aria compressa.

RACCORDERIE METALLICHE S.P.A. Sede e Stabilimento: Strada Sabbionetana, 59 - 46010 Campitello di Marcaria (MN) Italy

Tel. +39 0376 96001 Fax +39 0376 96422 info@racmet.com Cap. soc. € 5.000.000 i.v. Registro Imprese MN 02066990173 Codice Fiscale 02066990173

Partita IVA 01591820202 R.E.A. 169204

(EN 10204 - 2.1 rev B del 05-2022)

relativa ai sistemi di raccordi a pressare e tubi in acciaio inossidabile

INOXPRES

CARATTERISTICHE DEL SISTEMA A PRESSARE INOXPRES

Preso atto delle seguenti norme vigenti:

- > Art. 7 DM 37 del 22-01-08 Norme per la sicurezza degli impianti;
- > Art. 5 Legge n° 447 del 06/12/91 Regolamento di attuazione della Legge n° 46/90;

SI ATTESTA

- > che il sistema INOXPRES è composto da raccordi a pressare, o-ring in EPDM (-20 +120°C), tubo di collegamento, macchina pinzatrice e apposite ganasce o catene;
- > che il sistema INOXPRES è omologato con i principali enti di certificazione internazionale come ad esempio: DVGW Germania, CSTBat Francia, ETA Danimarca, WRAS UK, VdS Germania;
- > che il materiale utilizzato per la produzione dei raccordi a pressare INOXPRES è AISI 316L, 1.4404, in conformità alle norme EN 10088 EN 10312 EN 10217-7;
- > che i raccordi a pressare INOXPRES sono realizzati in conformità alla UNI 11179 e alle normative tecniche dei principali enti di certificazioni internazionali;
- > che i tubi di collegamento INOXPRES sono realizzati in acciaio inossidabile AISI 316L 1.4404, AISI 304L 1.4307 (serie 1 e 2), TYPE 444 1.4521, in conformità alle norme EN 10088 EN 10312 EN 10217-7:
- > che tutte le filettature per il sistema INOXPRES sono eseguite secondo le norme EN 10226-1 (DIN 2999 UNI ISO 7/1) o UNI ISO 228/1 (DIN 259);
- > che tutte le saldature eseguite sui raccordi per il sistema INOXPRES sono controllate al 100%, in pressione con macchine automatiche;
- che la guarnizione EPDM può essere usata per aria compressa fino ad un massimo di concentrazione di olio residuo pari a 5 mg/mc (4th classe of ISO 8573-1); per concentrazioni di olio residuo fino a 25 mg/mc (5th classe of ISO 8573-1) è necessario l'uso delle guarnizioni FKM disponibili in gamma come accessorio (vedi tabella seguente);

RACCORDERIE METALLICHE S.P.A. Sede e Stabilimento: Strada Sabbionetana, 59 - 46010 Campitello di Marcaria (MN) Italy

Tel. +39 0376 96001 Fax +39 0376 96422 info@racmet.com Cap. soc. € 5.000.000 i.v. Registro Imprese MN 02066990173 Codice Fiscale 02066990173

Partita IVA 01591820202 R.E.A. 169204

		Partic	olato solido		Acqua		Olio	
Classe ISO8573-1	Numero massimo di particelle per m3			Concentrazione	Punto di	Concentrazione	Olio totale	
	0.1-0.5 micron	0.5-1 micron	1-5 micron	massa mg/m3	rugiada in pressione g/m3	(aerosol liquido e vapore) mg/m3		
0	In base alle specifiche dell'utilizzatore o del fornitore dell'apparecchiatura e più restrittivo rispetto alla classe 1							
1	≤ 20.000	≤ 400	≤ 10	-	≤ - 70°C	-	≤ 0.01	
2	≤ 400.000	≤ 6.000	≤ 100	-	≤ - 40°C	-	≤ 0.1	
3	-	≤ 90.000	≤ 1.000	-	≤ - 20°C	-	≤ 1	
4	-	-	≤ 10.000	-	≤ + 3°C	-	≤ 5	
5	-	-	≤ 100.000	-	≤ + 7 °C	-	-	

Classificazione secondo ISO 8573-1

(i valori sono riferiti a una pressione di 1 bar, a 20°C e pressione relativa di vapore di 0.6)

- > che le guarnizioni utilizzate dal sistema INOXPRES sono in EPDM e omologate secondo: DIN 681 1 Typ WB; KTW 1.3.13 settore elastomeri D2; WBS Water Byelaws Scheme BS 6920; ANSI / NSF Standard 61; FDA titolo 21 parte 170 199 item 177.2600 (e) + (f). Supplemento: prova di resistenza alla compressione, DVR, 3000 ore / 110°C;
- > che le guarnizioni FKM per il sistema INOXPRES sono omologate secondo: FDA titolo 21 parte 170 199 item 177.2600 (e) + (f);
- > che i componenti del sistema a pressare INOXPRES non sono soggetti a marcatura CE come previsto dal D.LGS. n° 93 del 25 febbraio 2000;

Campitello di Marcaria, Maggio 2022

Ceccardi Guido Pozzetti Silvio Pizzamiglio Fabrizio

Chief Executive Officer (CEO) Head of Quality System Product Manager Plumbing & Heating Division

RACCORDERIE METALLICHE S.P.A. Sede e Stabilimento: Strada Sabbionetana, 59 - 46010 Campitello di Marcaria (MN) Italy

Tel. +39 0376 96001 Fax +39 0376 96422 info@racmet.com

Cap. soc. € 5.000.000 i.v. Registro Imprese MN 02066990173 Codice Fiscale 02066990173

Partita IVA 01591820202 R.E.A. 169204

I riferimenti completi dei nostri funzionari e partner commerciali sono disponibili sul nostro sito internet **raccorderiemetalliche.com**

RACCORDERIE METALLICHE S.P.A.

Head Office and Manufacturing Plant: Strada Sabbionetana, 59 46010 Campitello di Marcaria (MN) ITALY Tel. +39 0376 96001

Fax +39 0376 96422 info@racmet.com